Estimating Party-user Similarity in Voting Advice Applications using Hidden Markov Models
نویسندگان
چکیده
Voting Advice Applications (VAAs) are Web tools that inform citizens about the political stances of parties (and/or candidates) that participate in upcoming elections. The traditional process that they follow is to call the users and the parties to state their position in a set of policy statements, usually grouped into meaningful categories (e.g., external policy, economy, society, etc). Having the aforementioned information, VAA can provide recommendation to users regarding the proximity/distance that a user has to each participating party. A social recommendation approach of VAAs (so-called SVAAs) calculates the closeness between each party’s devoted users and the current user and ranks parties according the estimated ‘party users’ user similarity. In our paper we stand on this approach and we assume that ‘typical’ voters of particular parties can be characterized by answer patterns (sequences of choices for all policy statements included in the VAA) and that the answer choice in each policy statement can be ‘predicted’ from previous answer choices. Thus, we resort to Hidden Markov Models (HMMs), which are proved to be effective machine learning tools for sequential and correlated data. Based on the principles of collaborative filtering we try to model ‘party users’ using HMMs and then exploit these models to recommend each VAA user the party whose model best fits their answer pattern. For our experiments we use three datasets based on the 2014 elections to the European Parliament.
منابع مشابه
A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences
The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملA new approach for estimating parties ’ positions in voting advice applications ∗
The primary goal of voting advice applications (VAAs) is to calculate the match between voters’ and parties’ (or candidates) policy preferences. In order to do so, it is necessary for VAAs to estimate the positions of political parties. In many respects this is a daunting task given that all the commonly used methods for doing so have considerable drawbacks. Most VAAs use a combination of two m...
متن کاملSimilarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کامل